Math 20550 - Summer 2016 Directional Derivatives and Geometric Uses of the G

Directional Derivatives and Geometric Uses of the Gradient June 24, 2016

Problem 1. Find the directional derivative of $f(x,y) = \sin(x+2y)$ at the point (0,0) in the direction of $\mathbf{u} = \frac{1}{2}\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j}$.

Problem 2. Find the directional derivative of $f(x,y) = x^3 - y^3$ at the point (4,3) in the direction of $\mathbf{v} = \langle 1, 1 \rangle$.

Problem 3. Find the directional derivative of f(x, y, z) = xy + yz + xz at the point (1, 2, -1) in the direction of $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$.

Problem 4. Find the maximum rate of change of $f(x,y) = x^2 + 2xy$ at the point (1,0) and give the direction in which it occurs.

Problem 5. What is the minimum rate of change of $f(x,y) = x^2 + 2xy$ at (1,0)? In what direction does it occur?

Problem 6. Find a unit vector \mathbf{w} which is perpendicular to $\nabla f(1,0)$ and compute $D_{\mathbf{w}}f(1,0)$. What is the geometric meaning of your answer (beyond just saying it's the slope of the tangent line in that direction)?

Problem 7. Sketch the level curves f(x,y) = c for c = 1 and c = 3 where f(x,y) = xy. WITHOUT COMPUTING THE GRADIENT, sketch the vectors $\nabla f(1,1)$, $\nabla f(-2,-0.5)$, and $\nabla f(1.5,2)$.

Problem 8. Find the tangent line to the ellipse $9x^2 + 4y^2 = 40$ at the point (2, -1). Use Calc 3 to do this, do not solve for x or y.

Problem 9. The tangent plane to a level surface f(x, y, z) = k at the point P is given by x-2z = 3. Find a unit vector which is parallel to the gradient vector, $\nabla f(P)$.

Problem 10. Find the tangent plane and normal line to the surface $y \ln xz^2 = 2$ at the point (e, 2, 1).

Problem 11. Find the tangent line to the curve of intersection of $x^2 + y^2 = 1$ and z = 3xy at the point (0, -1, 0).

Problem 12. At what points do the surfaces $x^2 + y^2 - z^2 = 1$ and $x^2 + 4y^2 + 4z^2 = 1$ intersect tangentially?